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Resumen 

Este trabajo revisa contribuciones académicas que se centran en el análisis de series 

dinámicas composicionales, un tema poco investigado a pesar de la amplia disponibilidad de 

datos en ciencias sociales. Explora las opciones disponibles y divide los artículos de 

investigación en dos enfoques principales de probabilidad, frecuentista y bayesiano, y 

enumera varias transformaciones y técnicas específicas de datos. Como conclusión, esta 

rama del análisis estadístico de la composición requiere una actualización profunda y, por 

esta misma razón, es un campo fértil para la investigación futura.  

 

Abstract 

This work reviews academic contributions that focus on the analysis of compositional 

dynamic series, a little investigated topic in spite of the wide data availability in social 

sciences. It explores the available options and divides research articles into two main 

probability approaches, frequentist and Bayesian, and enumerates several specific data 

transformations and techniques. As conclusion, this branch of the compositional statistical 

analysis requires a profound updating and, for this very same reason, is a fertile field for 

future research.  

 

JEL Code: C22, C46 
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 1. Introduction 

  

 Variations in compositions are difficult to observe in cases like geological processes where 

individuals under scrutiny (solid rocks, sand, sediments, and the like) can change their composition 

but only through a long period of time. However, in social Sciences processes these changes usually 

take shorter time and become a powerful dimension for explaining diverse social events: for instance, 

composition related to unemployment, portfolio investment, trade balance, and many others. When a 

broker manages a portfolio of assets she looks for components (assets) with different degree of risk 

for assembling the balanced portfolio. Once formed, valuations of components vary in time and how 

these valuations evolve is critical for the investor: decisions might be taken to change that 

composition. In another more macroeconomic scenario, the composition of the trade balance (by 

destination, type of products, or by another feature) would describe patterns for changing directions in 

international commerce. Household expenditure composition evolution might help to understand 

changes in preferences and needs in a target population. Many other examples describe the 

importance of compositions in economics.  

 

 This fact has been taken into account for non-constrained data and an enormous amount of 

literature has been written on Time Series Analysis (TSA), being Hamilton (1994) and Woodward et al. 

(2012) great contributions on the subject, but little has been said about Compositional Time Series 

(CTS). CTS represent multivariate time series of compositions, often characterized by a constant sum 

constraint representation, at each time point t. Thus a CT can be defined as the series of elements of 

the simplex SD, the sample space of representations of compositional data to a chosen constant sum 

constraint. CTS are thus characterized by positive components with a constant sum at each time t 

(frequently the constant is taken as 1). This constraint forms a crucial problem when modeling 

compositional time series by standard multivariate time series methods. From the methodological point 

of view, the problem with a statistical analysis of CTS using standard methods is caused by the 

specific geometry of compositional data, the Aitchison geometry on the simplex, which accounts for 

inherent properties of compositional data.  

 

 Several approaches have been introduced to model CTS. The main strategy is based on the 

use of log-ratio transformations. This procedure consists of transforming CTS given in the coordinate 

space - the real vector space with Euclidean structure - to abandon Aitchison's geometry and, 

practically, to break the unit-sum constraint of the original time series. After transformations have been 

done, standard multivariate time series methods can be applied to transformed time series. 
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 The goal of the paper is to describe four principal aspects on each quoted work: what 

transformation have been applied to raw data for avoiding spurious analysis? What statistical 

methodology has been used for analyzing transformed data? Has this methodology brought new 

insights into CTS analysis? And lastly, what CTS features, if any, remain unanswered? Most recent 

contributions such as Mills (2009a,b), Dawson et al. (2014), Kynclová et al (2015) show that by 

transforming data according to early suggestions as pointed out by Aitchison (1986) and Egozcue and 

Pawlowsky-Glahn (2006) statistical standard procedures can be successfully applied to data. 

 

 The paper follows with section 2 where we introduce compositional data and postulate initial 

definitions. We follow with section 3 where the approaches for CTS are divided in two subsections: 

one for the Bayesian approach and the second for the non-Bayesian or frequentist approach, ending 

with a summary. Section 4 discusses the survey and Section 5 states the conclusions. 

 

 

2. The methodology of compositional data 

 

 Compositional data refers to proportions of a whole and because of it are subject to the 

constraint that the sum of its components is the unit or a constant. This restriction does not allow for 

an immediate interpretation of the covariance structure due to the presence of spurious correlation 

(Pearson, 1897). This has not been properly treated for long time by academic research across 

several disciplines. For instance, Brandt et al. (1999) describe the procedures commonly used by 

political scientists (among other social scientists) for avoiding this restriction: (1) ignoring the 

compositional nature of the data, i.e., by using independent equations for each component, (2) 

ignoring all but one component, i.e., any model of unemployment or political party vote share, or (3) 

converting a multipart composition into a two-part subcomposition and then employing (2). As they 

remarked all of these approaches ignore the deterministic structure of the correlation among 

components caused by the sum constraint; besides all approaches ignore the boundedness of the 

data and, finally, this subcompositional approach can mask (or create) substantively important 

variability in the data. Aitchison (1986) suggested a number of log-transformation in constrained data 

before applying any standard statistical procedure1. This section resumes the required concepts for 

understanding the findings of this work. It begins by defining what compositional data is. 

 

Definition 1. Compositional data  1 2, , , 'Dx x x x   with D parts, is a vector with strictly positive 

components, so the sum of all of the components equal a constant k. The sampling space is the 

simplex defined as   1 2 1 2, , , ' : 0; 1,2, , ;D
D j DS x x x x j D x x x k         .  

 

 

                                                 
1 Pawlowsky-Glahn, V. and A. Buccianti (2011) represents an enormous introduction to the topic of 
compositional data analysis. 



Atlantic Review of Economics – 1st Volume ‐ 2017 

 

 Revista Atlántica de Economía – Volumen 1 ‐ 2017 
 

 

 

 

 

 

Figure 1. Nine chapter composition in the National Budget of Argentina (1972-1992)  

Source: The author from data from Ministry of Economics (Argentina) 

 

Figure 1 presents raw data from the composition of the National Budget of Argentina. We can always 

obtain compositional data on DS  if we have an initial vector of nonnegative components. We only 

require dividing each component by the sum of all components. Following, we define the first 

transformation: 

 

Definition 2. The additive logratio transformation (alr) of index j  1, ,j D   is the one-to-one 

transformation from DS  to 1D�  defined as 

ln ,j
j

j

x
alr x

x
 

   
 

 

where jx  denotes de vector x with the component jx  deleted. 
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Figure 2. Data ALR-transformed from Figure 1. Public Debt chapter is used as fill-value. 

Source: The author from data from Ministry of Economics (Argentina) 

 

 

Figure 2 presents the data exposed in Figure 1 transformed by the alr-transformation by using Public 

Debt component as a fill-value. This is an asymmetric transformation. A case for symmetric 

transformation is the following one: 

 

Definition 3. The centered logratio transformation (clr) is a bijective application between Dx S  to 

Dc� defined by 

   
ln ,j

j

x
clr x c

g x
   

with    11

DD

jj
g x x


   as the geometric mean of the composition.  
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Figure 3. Data transformed by CLR-transformation. 

Source: The author from data from Ministry of Economics (Argentina) 

 

We must note that clr-transformed data is constrained by a zero-sum constraint. Figure 3 shows data 

from Figure 1 transformed now by the clr-transformation. Finally, we use the following compositional 

time series definition: 

 

Definition 4. Let  1, , , 0, 1, 2,t t tDx x x t      be a compositional time series process (CTS 

process) defined on DS  for any t. 

 

A given CTS process  tx  could be analyzed as a multivariate time series or sub-compositional 

process (by isolating two or more parts). The alr and clr transformations can be applied to any CTS 

process. We will call  tc  to a clr-transformed CTS process defined on D�  then it is restricted to the 

hyperplane V because 1 0t Dz  . And  ta will be the notation for an alr-transformed CTS process 

defined on 1D�  that depends on the denominator used in the alr-transformation.  
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 3. Approaches to CTS Analysis 

 

 While non-Bayesian approaches may be considered the mainstream for non-constrained time 

series analysis, one could argue that the opposite is the case for CTS analysis. Many of the works that 

will be recapitulated have been designed under the spirit of the Bayes theorem and this fact in some 

cases requires a quick review of these methods. Chronologically, earlier papers worked with 

transformed data on the log-normal distribution and latter papers introduce the Dirichlet distributions 

as assumption in parameters behavior. Original notations are homogenized for the sake of clarity. We 

begin next section describing Bayesian CTS models. 

 

 3.1 Bayesian Methods in CTS 

 

 Bayesian techniques require that researchers explicit their expectations on the distribution that 

actual data under analysis have (see Broemeling and Shaarawy (1986); Koop (2003: Ch. 8); Poirier 

and Tobias (2005); and especially Zellner (1984: part 3), for extensive references on Bayesian 

inference).  A considerable part of the contributions is based on some form of state space models, 

which are hierarchical in nature. When applied to compositional time series this approach requires the 

definition of prior information on time series evolution. For example, Grunwald (1987) works with 

compositional time series by using state space modelling for non-Gaussian time series. He opts for the 

clr transformation for dealing with the constant-sum constraint. Then he applies a state space model 

by specifying initial observations and state distributions “which describe either diffuse or well-defined 

initial beliefs” (Grunwald, 1987: 16) for time series forecasting. This process is recursively done by the 

Kalman filter implemented on the filtering stage.   

 

 For those that are unrelated with state space models2, it can briefly state that a time series 

1 2, ,y y   could be thought as a (steady) model  

    | , ~ Dir ,t t t t ty            (2.1) 

where, in the case of continuous proportions, they assume yt follows a Dirichlet distribution. This is 

called the observation equation, that evolve conditional to a state t  with spread t 
3. The state  t  is 

assumed to evolve over time according to the steady state model, namely 

     1 | D | Dt t t tp p


     with 0 1       (2.2) 

                                                 
2 For a general theory of state space models applied to time series analysis see Harvey (1989).  
3 t is deliberated introduced by the author to cope with a forecasting problem. t is updated separately from t . 

See Grunwald (1987: Ch. 4) and Grunwald et al. (1993: 108-109) for details. 
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 There, Dt is defined recursively by  1D , Dt t tI   where, for 1t  , { ,t tI y  all other 

relevant information available at time t but not at t – 1} and D0 are the externally determined estimated 

parameters and all available relevant information at t = 0. 

Dirichlet distribution in (2.1) has the following form: 

   
 

11 11
11

1

d
j dd

j j

f p p p


 








  with 1 1d        (2.3) 

with sample space Sd and parameter space   1 1, , : 0 for 1, , 1d j j d        
.
 

As for any state space model, it must be defined: 

(i) the assumptions underlying the state behavior,  

(ii) the description of the (recursive) filtering process, as stated by Grumwald is described by: 

 

Observation Distribution  1 1|t tf y    (2.4) 

State Forecast Distribution 
        1 1| | |t t t

t t t tf y f y f y d       (2.5) 

State Posterior Distribution 
       

  
1 1 1

1

1

| |
|

|

t
t t tt

t t
t

f y f y
f y

f y y

 


  






  (2.6) 

(Note that the state posterior distribution is described by Bayes theorem.),  

(iii) the forecasting stage (described in the denominator of the state distribution posterior), and  

(iv) the smoothing stage (again, derived from state distribution posterior for t  n).  

 

 Finally, a crucial item is the likelihood function that can be used for estimating parameters 

outside the internal updating procedure. This function is usually maximized through numerical 

methods. It is assumed that the observation distribution  |t tf y   and the state forecasting 

mechanism  1 |t tf    are known in form but they depend on an unknown parameter . The log-

likelihood for  is  

     1
1
log |

t t
t

i
L f y y 


         (2.7) 

 Finally, Grunwald uses US Federal Government data (on tax revenues and external trade) for 

testing his model and applies the Dirichlet distribution in the updating and forecasting procedures 

obtaining acceptable good fitting and forecasted values.  

 

 Another case is Quintana and West (1988) who work with Mexican import time series by using 

Aitchison’s additive log transformation (alr). They model series as a class of dynamic multivariate 

regression (DMR), closely related to state space modelling. This technique allows for modeling 

multiple variate time series by using a basic structure that assume the existence of an observation 

equation (observed values), evolution equation (state equation) and prior information (assumptions on 



Atlantic Review of Economics – 1st Volume ‐ 2017 

 

 Revista Atlántica de Economía – Volumen 1 ‐ 2017 
 

state equation probability distribution). In a similar fashion but using a matrix notation they present the 

following model: 

Observation Equation t t t ty x e       ~ 0,t te N v   (2.8) 

Evolution Equation 1t t t tG F      ~ 0, ,t tF N W   (2.9) 

Prior Information    1 1| ~ , ,t t tN M C     1
1 1~ ,t tW S d
   (2.10) 

 In the above equations, ty  is a  1q  vector of observations made at time t, tx  is a  1p  

vector of independent variables, t  is an unknown  p q  matrix of system (regression) 

parameters, te  is a  1q  observation error vector, tv  is a scalar variance associated with te  and  

is an unknown  q q  system scale variance matrix providing cross sectional correlation structure for 

the components of ty . N (M, C, ) and W –1 (S, d) denote the general matrix normal and inverted-

Wishart distributions (this are derived in the appendix of the original paper). 

 

 The nature of the model component series can be seen as follows. For 1, ,j q   let tiy  be 

the observation on the jth series, simply the jth element of yt; tje  the corresponding element of te ; t  

the jth column of t ; ftj the jth column of Ft; mtj the jth column of Mt; and 2
t  the jth diagonal element of 

.  Then, tjy  marginally follows the DRM: 

Observation Equation tj t tj tjy x e 
  2~ 0,tj t je N v  (2.11) 

Evolution Equation 1tj t t tjG f      2~ 0,tj t jf N W  (2.12) 

Prior Information    2
1, 1,| ~ ,t j t j t jN m C    1

1 1~ ,t tW S d
   (2.13) 

 The joint structure comes in via the covariance, conditional upon :  

 , ,ti tj t ijCov e e v        (2.14) 

 , ,ti tj t ijCov f f W        (2.15) 

  1, ,ti tj t ijCov C          (2.16) 

for i  j, where ij is the ij off-diagonal element of .   

They use CTS process  1, ,t t tqy y y  , 1,2,t   , multivariate time series such that 0tiy   for all 

i and t. They are concerned only in the proportions   1

1
q
it ti tp y y



  . Later they apply the clr 

transformation as in Definition 3: 

    log log log ,  1, , ,tj
tj tj tj

tj

p
c p g p j q

g p

 
    
 
 


 

 (2.17) 
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where g(ptj) is the geometric mean of the pij. Modeling ct with the DRM previously introduced derives in 

a conditional multivariate normal structure. Thus the observational distribution of the proportions pti is 

the multivariate logistic-normal distribution as defined in Aitchison and Shen (1980). 

A difference between state space models and DRM approach is that DRM include discount factors to 

adapt Wt to subjective or exogenously given interventions. Thus, for a given discount factor , such 

that 0 1  , we have that: 

  1
11t t t tW G C G 
          (2.18) 

When  = 1, Wt = 0 and then t  will evolve purely deterministic (also called static model), but for 

smaller values  they can model greater variation in t . This is used, for example, for taking into 

account shocks or trends that could modify Wt evolution. Notice that state space modelling approach 

simply add covariates (for instance, dummies that represents such shocks or trends) explicitly and 

then their statistical significance can be measured.      

 

 Following Quintana and West (1988), they also notice the first complication on the transformed 

data. As we suppose that yt in (2.1) follows (2.11) then it emerges the singularity of the model due to 

the zero-sum constraint, where 1 0ty  , for all t, where  1 1, ,1   . This follows from the definition 

and leads to singularity of the matrices , Vt, 
*

tV , etc. The way they deal with this problem is by 

transforming yt using ty K  where: 

   111 ,  1 1, ,1K I q           (2.19) 

Now it has to retransform (2.11) by including (2.19), so we get: 

Observation Equation   ,t t t ty K x Ke       ~ 0, ,t tKe N v   (2.20)  

Evolution Equation 1 ,t t t tG F K      ~ 0, ,t tF K N W   (2.21)

Prior Information  1 1 1~ , , ,t t tN M K C     1
1 1~ ,t tW K S K d
   (2.22)

 

 Where t = tK and  = K´K. By these linear transformations, quantities tx , vt, Gt, Wt, and Ct 

remain unaffected by the transformation. This way, the constrained data follows now a DMR. Quintana 

and West end the paper with an application to Mexican import composition with very good results. 

 

 Grunwald et al. (1993) review Grunwald (1987)’s thesis. They specify symmetric logratios (clr) 

as transformation for the raw data and delineate more concisely the Dirichlet state space modeling 

approach. They describe it as based on the idea that dynamic proportions are constructed of an 

unobserved random walk component and a noise component. Then they apply their stylized model on 

world car production composition forecasting. 
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 The next paper that uses Bayesian approach is Cargnoni et al. (1997). They use as the 

motivating case of study the forecasting of the number of high school students in Italy. They divide 

students as (i) students that repeat the same grade in consecutive years, (ii) students that proceed to 

the following grade and do not leave the school, and (iii) students that leave the school. They don’t 

clearly specify the transformation to apply, but they put in the options of transformation those of 

Aitchison (1986)’s. As previous investigations, they rely on a kind of state space time series model. By 

assuming that there exists cross-sectional conditional independence of the series (independence 

among individuals) they derive a class of conditionally Gaussian dynamic models, a bit more complex 

than Quintana and West’s. 

 

 In another more complex approach, Ravishanker et al. (2004) study the relationship between 

air pollution and mortality proportions in the Los Angeles area by using a Hierarchical Bayesian 

modeling framework. They first transform raw data by the additive logratio (alr) transformation. Then 

they use linear regression with vector autoregressive moving average (VARMA) errors. Inference is 

derived from Bayesian framework using Markov chain Monte Carlo algorithm in order to 

simultaneously generate samples from the posterior distributions of the parameters.  

The framework can be briefly described as follows: Let yt denote a g-dimensional composition at time 

t; i.e. a vector of quantities Ytj, j = 1, …, G such that 1 1G
j tjY  , t = 1, …., T. Let at denote the vector 

resulting from the alr transformation of yt, i.e.,  

 ln ,tj
tj

tG

Y
A

Y

 
  

 
 with 1, ,j g  , 1, ,t T       (2.23) 

 Let zt be a t-dimensional vector of covariates at time t. A normal linear regression model with 

VARMA errors for the g-dimensional vector time series at is given by: 

 ,t t ta z w            (2.24) 

    t tB w B h           (2.25) 

where γ is a g-dimensional intercept term,  is a t g  matrix of regression coefficients, wt denotes the 

g-dimensional vector of regression errors, ht are g-variate iid N (0,) variates with unknown positive 

definite covariance matrix . It is assumed that wt = (W1,t, …, Wg,t) are generated by a zero mean 

VARMA (p, q) process. Once this model is estimated arises the problem that solution may be non-

unique, so the authors apply a Bayesian selection mechanism among best solution candidates. So, 

they maximize a Gaussian likelihood function, then they specify a prior density function and, using 

Bayes theorem, they also specify the posterior density. As this last posterior density is analytically 

intractable they must rely on numerical simulations. They use Monte Carlo simulations for the 

expected composition proportions based on the samples from the (simulated) posterior density 

function. 
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 All of this enormous and complex simulated process makes difficult for direct interpretation of 

the steps of the estimation procedure. As final result, they obtain twelve possible models from where 

they choose, by selecting those with lower Bayesian Information Criterion (BIC). 

Finally, Bhaumik et al. (2003) combine alr and Box-Cox transformations for dealing with the same data 

previously used by Grunwald (1993) and Ravishanker et al. (2004). These compositions use the 

following transformation: 

 

 

 

1

if 0 

if  0  
ln

tj
tj

tG

tj

tG

Y

Y

tj
tjtj

tj
Y

Y

BCA









   


, with 1, ,j g  , 1, ,t T    (2.26) 

where tj � is an unknown parameter named as the Box-Cox parameter and 1g G  . The 

transformation is defined across the paper as a  ,t t tBCA BC Y  , a special case that it gets alr 

transformation when 0t  , for all ,i t  (as suggested by Aitchison, 1986). 

 

 The dynamical linear model is defined as t t t t t tBCA Y e     , where t  and t  are g-

dimensional vector of unknown parameters and et is the random error. By using the scale mixture of 

multivariate normal (SM-MVN) error distribution they develop a complex procedure for estimating and 

selecting alternative models as in Ravishanker et al. (2004). 

 

 3.2 Frequentist Approach to CTS 

 

 While Bayesian approaches rely on the researcher's specifications about the a priori data 

distribution and then update the estimation with the observed values, non-Bayesian or frequentist 

procedures, as linear regressions, assume some known (usually Gaussian) probability distribution of 

the stochastic part of the model. 

 

 Although the data constitute a multivariate time series, ARIMA techniques based on 

multivariate autoregressive integrated moving average are usable thanks to Aitchison’s 

transformations. Brundson (1987), Brundson and Smith (1988) and Smith and Brundson (1989) use 

the additive logistic transformation for modelling time series as autoregressive processes. On the 

second paper, they review main Aitchison’s findings on compositional data and adapt them into a time 

series framework. Finally, they try to test subcompositional independence on time series by applying 

their methodology to UK vote-intention’s poll time series data, in the first and third paper, and try to 

forecast unemployment rate in Australian labor force in the second one. 

 

 So, they transform data by applying alr transformation as in Definition 2: 
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   
1

log ,  1, ,i
m i

m

p
a p i m

p 

 
  

 
        (2.26) 

where 11 1 m
im ip p   . Brunsdon (1987) and Smith and Brundson (1989) are first attempts to test 

whether subcompositions in CTS data might be independently studied. Once a positive answer 

emerges, they define a Granger causality test (Granger 1969) with data from UK Gallup poll test. They 

verify independence between vote intentions on main political and other kinds of responses in political 

survey questions but that there was no independence within vote intentions on main political parties. 

Later, in Brundson and Smith (1988), they apply Box-Jenkins methodology directly to alr-transformed 

data. This is by far the most common technique taught in time series courses. The goal is to predict 

labor force components in the Australia. They model transformed data as a VARMA process and 

helped with autocorrelograms and partial autocorrelograms they identify the order of the time series. 

Forecasted proportions were reasonably close to actual data.  

 

 A number of recent contributions emphasize that the approach to compositional time series 

need not be remote from many traditional time series techniques. Thus, Mills (2009a, b) represent two 

interesting contributions in this regard. Mills (2009a) focuses on predicting trends in obesity in the UK. 

For this it transforms data of the population percentage with overweight with the log-quotient additive 

alr and then applies an ARIMA prediction process. The predictive advantage is limited and the 

exercise of application is fruitful in predicting values significantly. Mills (2009b) broadens the scope of 

application to other sectors by repeating obesity figures and adding percentages of national income 

and age ratios for cricket players. For this the car extensively uses an alr transformation. 

The prediction of time series has also been the point of analysis of Koehler et al. (2010) who model 

compositional time series with alr transformations. The specific case of analysis is the composition of 

adjustable rate loans. However, the authors add an exponential smoothing vector model that improves 

prediction indicators. Bergman and Holmquist (2014) more recently uses clr-transformed election polls 

data from Sweden. The smooth compositional data provided by different consultants by using 

compositional weighted least squares estimations and provided a clearer picture of the trend in voting 

preferences. van der Braker and Roels (2010) deals with discontinuities in sample variables. The 

contribution uses centered and additive logratio transformations on data for estimating and simulating 

data in series that was redesigned potentially harming the temporal comparability in data. 

 

 Finally, a more complex analysis is carry out in Brandt et al. (1999). They implement a vector 

autoregression (VAR) representation for dealing with compositional time series. The VAR was 

originally proposed by Sims (1980) for non-constrained data. They try to elucidate how the evolution of 

economic and political indexes affects vote intentions in the USA. As VAR models assume that we can 

best explain the current values of the endogenous variables (both compositions and non-

compositions) using a sequence of predetermined past values. Formally, they write a system of 

compositions in reduced form for each observation as: 

  1
P
jt t j t j tY Z Y            (2.27) 
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where Yt is an M  1 = (Q + S)  1 vector. Zt is a matrix of exogenous variables (including an intercept) 

and Yt – j  is the jth lag of Yt. If we assume that the M  1 error term t  N(0,) then we have a time 

series model for the symmetric (clr-transformed) log-ratios of the components. Assuming that the 

series Yt are multivariate log-normal is a sufficient condition for the proportions to have a logistic-

normal distribution (Aitchison 1986, Quintana and West 1988). They called this system a 

Compositional VAR or CVAR. 

 

 As noted by Quintana and West (1988), there is singularity into this VAR model due to the 

zero-sum constraint of the transformed values of the dependent variables. A traditional solution 

implemented in economic literature has been to drop one of the variables (usually the last variable) as 

Theil (1971: 326-356) suggested. So, they adopt Quintana and West proposal and create a matrix K 

defined as: 

  
1

,K I hh
q

           (2.28) 

where, again, q is the number of components, I is a q q  identity matrix and h is a 1q  vector of 

ones. The matrix performs an elementary row operation that maps the logarithms of the proportions to 

the symmetric logratio space. By using K they impose a constraint in the VAR system represented by 

(2.27) which is modified by (2.28) in the following way: 

 1
P
jt t j t j tKY Z Y K             (2.29) 

where K  , and j jK  . This way, as in Quintana and West (1988), the transformation leaves 

the lagged and exogenous right-hand side variables unaffected. Kynčlová et al. (2015) presents VAR 

analysis applied to raw compositional data and explains the misleading results and then transforms 

the data and reapply the procedures and compares to former analysis. 

 

 Final estimation requires the usual procedure for VAR estimation (i.e., to estimate the q 

equations one by one or the system simultaneously), and then used a numerically extensive work for 

compute bootstrap samples and Monte Carlo integration for computing the moments of the posterior 

distribution. They apply the model to estimate the incidence of socioeconomic and political variables to 

voters’ partisanship in the USA. 

 

 3.3 Summary 

 

 The Table 1 summarizes the previous reviews. There it can be noticed the respective paper 

reference, the transformation applied to raw data, the statistical technique, specific comments of the 

reviewer (if any), and the authors application field. As observed, alr and clr transformations were both 

applied in the different papers, the predominant statistical method is (variations of) state space model 

and most of the cases of study are from the social sciences area. 
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Table 1. Summary of papers 

Author/s Transformation 

Applied on Raw 

Data 

Statistical 

Technique 

Comments Applied Case of 

Study 

Brunsdon 

(1986) 
Additive logratio 

Log-Normal based 

autoregressive 

integrate moving 

average (ARIMA) 

model. 

 
UK poll data on 

vote intentions 

Grunwald 

(1987) 
Centered logratio 

Dirichlet conjugate 

state space model. 

Several other time 

series approaches 

are presented. 

Tax revenues 

compositions and 

world car 

production 

composition. 

Brunsdon and 

Smith (1988) 
Additive logratio 

Log-Normal based 

vector 

autoregressive 

moving average 

(VARMA) model 

They use (a more 

traditional) Box-

Jenkins methodology. 

Forecasting of 

Australian labor 

force composition 

Quintana and 

West (1988) 
Centered logratio 

Log-normal state 

space model 

(Dynamic linear 

model) 

They must introduce 

transformations on 

the regressand for 

avoiding singularity 

emergence on the 

variance and 

covariance matrix. 

Mexican imports 

and exports 

composition 

Smith and 

Brunsdon 

(1989) 

Additive logratio 
Log-Normal based 

ARIMA model. 
 

UK poll data on 

vote intentions 

Grunwald, 

Raftery, and 

Guttorp 

(1993) 

Centered logratio 
Dirichlet conjugate 

state space model 
 

World car 

production 

composition. 

Cargnoni, 

Müller, and 

West (1997) 

Logratio (not 

declared 

explicitly) 

Conditionally 

Gaussian dynamic 

model 

 

Forecasting of 

number and 

composition of 

secondary school 
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students in Italy. 

Brandt, 

Monroe, and 

Williams 

(1999) 

Centered logratio 

Compositional 

Vector 

Autoregression 

(CVAR) system. 

They deal with the 

same problem that 

Quintana and West 

(1988) and introduce 

analogous 

transformations on 

regressands. 

Socioeconomic 

and political 

determinants of 

Partisanship 

composition. 

Bhaumik, Dey 

and 

Ravishanker 

(2003) 

Box-Cox with Alr-

transformations 

Linear regression 

with hierarchical 

priors 

 

Use the same 

data as 

Ravishanker et al 

(2004) and 

Grunwald et al 

(1993) 

Ravishanker, 

Dey, and 

Iyengar 

(2004) 

Additive logistic 

ratios  

Linear regression 

with (VARMA) 

errors and 

Hierarchical 

Bayesian selection 

model. 

 

Los Angeles 

mortality 

composition. 

Mills (2009a) Additive logratio 
ARMA model base 

on Log-Normal 
 

Bugdet 

composition, 

obesity trends, 

cricket results in 

UK 

Mills (2009b) Additive logratio 
ARMA based on 

Log-Normal 
 

Obesity trends in 

UK 

Koehler et al. 

(2010) 
Additive logratio 

Vector of 

Exponential 

smoothing Model  

 

Adjusted loan 

rates, election win 

chances 

van der 

Braker and 

Roels (2010) 

Centered logratio 

Seemingly  

Unrelated  

Structural  Time  

Series and 

Restricted  

Multivariate  Model 

 

Netherlands’s 

Permanent 

Survey on Living  

Conditions 

(PSLC). 

Bergman and  

Holmquist 

(2014) 

Centered logratio 

Compositional 

Weighted Least 

Squares (C-WLS) 

They smooth political 

party preferences 

obtained by different 

sources 

Poll Party Vote 

Preference Data in 

Sweden 
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Dawson et al. 

(2014) 
Additive logratio 

ARMA based on 

Log-Normal 
 

Sentiment 

analysis in Taking 

Part Survey (TPS) 

Kynčlová et al 

(2015) 

Additive and 

isometric logratio  
VAR Model  

Paper production 

shares in Europa. 

 

 

 

 

 4. Discussion 

 

 Since their sample space is the simplex rather than the real space with the usual Euclidean 

geometry, they need to be expressed in appropriate (preferably orthonormal) coordinates with respect 

to Aitchison geometry before any statistical analysis are performed. As observed along the survey, 

different approaches have been used to understand the effect of time in compositions. It is proposed 

an exploration by distinguishing two main pathways: first, contributions that are based in the most 

commonly used frequentist approach to time series analysis, and secondly, a Bayesian approach to 

CTS. However, it is hard to state which of the two has been shown to be the most efficient way to deal 

with CTS. This aspect will depend, of course, of the specific requirement of a particular research. In 

any case, transformation on raw data will be presents given that constrained nature of data. In general 

terms, compositional data should not be treated in a raw scale, but only after a log-ratio transformation 

(Aitchison, 1986). This is so because the information inherent to a compositional data is relative, each 

component depends on the value of other components. The principle of working in coordinates allows 

applying any sort of multivariate analysis to a log-ratio transformed composition, as long as this 

transformation is invertible. This principle is then of full applicability to time series analysis. 

 

 One aspect should be pointed out: Economic theory seldom explains models relying on the 

composition of relevant variables. This way, TSA has been focus mainly on non-compositional data. 

But as exposed, examples of CTS are present all across the economic analysis and in relevant and 

present topics, such as unemployment, voting processes, portfolio composition, national accounts, 

and budgetary decisions, among others.   
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 5. Conclusions 

 

 It´s was found that academic literature is scant and scattered and it seems to be no clear 

mainstream. Several authors freely use two of the most known Aitchison’s transformations and ad-hoc 

statistical model and sometimes these infrequent modeling approaches seem to be the center of the 

investigation rather than the compositional nature of data. Throughout this brief review three main 

aspects have been observed: the transformations, the statistical models, and the cases of study. First, 

the additive and centered logratios have been equaled used in the scant literature. However, none of 

the papers have compared the efficiency or appropriateness of each of the transformations for the 

specific case of study or statistical modelling. We know that alr transformation is not isometric and the 

clr transformation is isometric but constrained4. As a good remark has to be noted that Quintana and 

West (1988) and Brandt et al. (1999) have dealt with the problems of clr-tranformation zero-sum 

constraint by exogenously modifying the regressands in the linear regression equation. Further studies 

are required, again, for the appropriateness of this ad-hoc solution. 

 

 Second, diverse statistical techniques have been summarized. Such diversity remarks the lack 

of a mainstream methodology for dealing with CTS. Traditional TSA has a stock of available 

techniques that has not been applied using transformations from compositional data analysis, for 

instance, error-correction models, panel data analysis (Baltagi, 1995), dynamic panel data (Arellano 

and Bond, 1991), among others. While contributions that make use of VAR and ARIMA modelling 

procedures have been quoted, most of the literature relies on state space model variants that diverse 

degree of success have shown in dealing with constrained data. But for most social scientists this 

specific model (and more generally, Bayesian econometrics) usually is not studied in regular courses 

on Statistics or Econometrics.  

 

 Finally, the majority of the motivational cases of study of these papers come from social 

sciences problems. This is again paradoxical with the finding that only some of these statistical 

techniques are widely available for an average social scientist. We could say the same in terms of the 

required transformation for dealing with the constant-sum constraint. 

 

 Dynamic compositional problems are of substantive interest for social sciences. Examples like 

the evolution of federal budgets components, tax revenues compositions, income distribution, savings 

and investment composition during periods of crisis, among others represent interesting issues for 

future analysis. It is lacking the application of well known transformations into also well known least-

squares-based methods for widening the knowledge and understanding of compositional time series. 

 

                                                 
4 Besides, none of the works have used the isometric logratio that possesses such nice mathematical proprieties 
(Egozcué et al. 2003). 
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