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 Resumen 

 

La estimación de los períodos de tenencia de una inversión en instrumentos 

financieros debe realizarse mediante un proceso dinámico, en el cual el tamaño 

del intervalo de observación influye en los resultados. Pequeños intervalos de 

observación producirán en promedio períodos de tenencia más pequeños a los 

obtenidos con intervalos grandes de observación.  El enfoque desarrollado en 

este artículo ofrece la posibilidad de estimar estos promedios, 

independientemente del tamaño del intervalo de observación. El método es 

ilustrado con el ejemplo de dos distribuciones, basadas en las leyes de 

probabilidad exponencial y geométrica. La estimación óptima se encuentra al 

maximizar la función de verosimilitud. 

 

Los dos ejemplos examinados fueron aplicados al instrumento financiero 

Exchange Traded Fund (ETF). Estos fondos, negociables en la bolsa de valores, 

tienen factores de apalancamiento -2, -1, +1, y +2. Aunque más de 30 ETFs 

fueron estudiados, la mayoría de los datos están orientados al “db x-tracker 

ShortDAX ETF”, “db x-trackers DAX ETF”, “iShares DAX (DE)” y el “Lyxor ETF 

LevDAX”. La aplicación del método propuesto a las ETFs aumenta la amplitud 

del período de tenencia entre un 4% y 29%. El aumento es dependiente del 

tamaño de la ventana de observación, del factor de apalancamiento y del 

promedio de los períodos de tenencia. 

 

 

 Abstract 

 

The estimation of the holding periods of financial products has to be done in 

a dynamic process in which the size of the observation time interval influences 

the result. Small intervals will produce smaller average holding periods than 

bigger ones. The approach developed in this paper offers the possibility of 

estimating this average independently of the size of this time interval. This 

method is demonstrated on the example of two distributions, based on the 
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exponential and the geometric probability functions. The estimation will be found 

by maximizing the likelihood function.  

 

The two examples will finally be applied to the financial instrument Exchange 

Traded Fund (ETF). The analysis contains ETFs with leverage factors of -2, -1, 

+1 and +2. Although different ETFs are treated, the majority of the data is 

concerned with the “db x-tracker ShortDAX ETF”, “db x-trackers DAX ETF”, 

“iShares DAX (DE)” and the “Lyxor ETF LevDAX”. By the application of the 

proposed estimation approaches, the average holding periods of ETFs increase 

by 4%-29%. This increase depends on the time interval T of observation, the 

leverage factor, and the average holding period.  

 

 

 

Palabras clave: Períodos de tenencia, duración, distribución exponencial, distribución geométrica, 

muestreo, estimación de máxima verosimilitud, apalancamiento en los Exchange-Traded Funds 

(ETFs). 

Key Words: Holding periods, Duration, Exponential distribution, Geometric Distribution, Sampling, 

Maximum Likelihood estimation, Short and Leveraged Exchange-Traded Funds (ETFs). 
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 1. Introduction 
 

 

The measurement of holding periods is done by more or less rough estimation. The issues with 

this estimation depend on how the holding periods are determined. The floating process of the buying 

and selling of financial assets without break makes the precise observation of holding periods as 

difficult as taking a sharp photo of a running horse. The external or classical way uses the aggregated 

data of the exchange boards; the internal way uses the individual data of financial institutions. Both 

methods of calculating the average holding periods have their imperfections, which will be discussed 

in the following chapter. The approaches developed in this paper are concerned with the imperfection 

of the internal way. In this case, the size of the observation time interval influences the result. Small 

intervals will produce smaller average holding periods than bigger ones. The method proposed in this 

paper offers the possibility of estimating the holding period independently of the size of this time 

interval. This approach is demonstrated on the example of two distributions, based on the exponential 

and the geometric probability functions. The estimation will be carried out by maximizing the likelihood 

function.   

 

 
 

 2. The classical way to calculate holding periods and the 
internal way 
 

 

The classical way to calculate the average holding period uses the ratio “market capitalisation / 

sales”. In the stock markets, the computation of market capitalisation uses stock prices at the end of 

the year, which must be multiplied with the number of stocks in this market. The sum of sales of stocks 

in the whole year is used as the divisor. Stocks which are not dealt on exchange boards are not 

included in the calculation in Table 2-1. This table shows the market capitalisation, the sales and 

furthermore the holding period in years for the years 1980 to 2014.  

 

Table 2-1 depicts the increasing activity on the exchange boards of stock markets in the last 

three decades. In this time interval, the holding period of stocks has been severely decreasing: from 

nearly 9.7 years in 1980 to 0.6 years in 2014. The estimation of holding periods in the way described 

above has the disadvantage that the date when the capitalization is computed is at the end of the 

year, while the sales are registered over the whole year. Therefore, the lowest holding period of 0.3 

years can be recognised in the year 2008 when the financial crisis took place. At the end of the year, 

the value of the stocks2 was only 60% of that for the beginning of the year, which were also used to 

                                                           
2 See, e.g. German Stock Index DAX or European Index STOXX50. 
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calculate the sales. Generally in the case of constant holding periods, strongly rising or falling stock 

prices within one year would cause higher or lower ratios as estimates for these periods. 

 

The classical way's imprecise estimation of the holding periods is due to the lack of the more 

detailed information that banks have. Financial institutions know when their clients or investors buy or 

sell assets. Although the internal way to calculate holding periods uses more information, the exact 

average holding period cannot be calculated either in most cases.  

 

If the sample consists of investors that buy assets within a period, it would be necessary to wait until 

all these engagements are closed again. This could consume too much time to finish the study. The 

more convenient way would be to take some investors who sell assets within a period and search in 

the past for when they were bought. This point of view is not so time consuming, but ignores those 

clients with long holding periods who will sell sometime in the future. Especially if new financial 

instruments have recently been introduced into the market, this estimation problem exists.     

 

Another internal way to estimate holding periods regards all investors that buy and sell within a 

sample window of years or months. This approach regards only the transactions which occur 

completely in the time window between time unit 1 and T. The maximal holding period measurable in 

this window has T-1 time units. Cases in which assets are only sold or only bought outside the window 

are not taken into account, and neither are cases with holding periods greater than T-1, which belong 

proportionately to the used sample of years, but were bought earlier and sold later. Depending on 

whether the transaction is buying or selling, the first case will be called in the following “semi-outside” 

and the second “completely-outside”. A calculation of the holding period which ignores “semi-outside” 

and “complete-outside” cases will always underestimate the real holding period. This deficiency 

depends on the number of years in the sample. 

 

 

Year 
Capitalisation 

in thousand million US 
Dollars 

Sales  

in thousand million US 
Dollars 

Holding period 

in years 

1980 2.9 0.3 9.7 
…    

1990 8.9 5.7 1.6 
…    

2000 31.0 49.8 0.6 

2001 26.6 38.1 0.7 

2002 22.8 33.1 0.7 

2003 30.7 32.2 1.0 

2004 36.3 40.5 0.9 

2005 40.8 52.3 0.8 

2006 50.4 69.4 0.7 
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2007 60.6 99.3 0.6 

2008 32.3 113.2 0.3 

2009 47.6 81.7 0.6 

2010 54.7 85.5 0.6 

2011 47.4 102.0 0.5 

2012 54.5 82.9 0.7 

2013 64.5 93.0 0.7 

2014 67.5 111.4 0.6 

Table 2-1: Capitalisation, sales and holding period in stock markets of the “World Federation of Exchanges” and the “Exchange 
boards of the London SE Group” in the years 1980 to 20143 

 
   
To get better estimations for holding periods out of a sample of years, an approach will be 

developed in the following using the information base of the internal way. This approach contains two 

steps. The first step is concerned with including the semi-outside cases using a correction factor and 

the second step is founded on the assumption that the holding periods are geometrically or 

exponentially distributed. 

 
 

    
 

 3. A correction factor to include the “semi-outside” 
engagements 
 

 
In a sample observed within a window of time, only those cases can be registered that are 

bought and also sold within this time interval. Investments bought before or sold after this time interval 

must be ignored. The maximal duration which can be observed is T-1, which is the difference between 

the last date and the oldest date; this interval touches T days. In the case of continuous time 

measurement, the difference between T and T-1 does not exist.  

 

The size t (t = 0, ..., T-1) of a holding period has its lowest value, t=0, in the case of day trades, 

which touch one day. The maximal holding period t which can be observed is t = T-1, as mentioned 

above. Bigger holding periods t > T-1 had to be ignored as it was not known whether they exist or not. 

A solution for this problem will be discussed in a later chapter. 

 

Normally in the calculation of the average holding period, the periods are weighted by a factor, 

the number nt of investments with a duration of t days. Depending on the application, the invested 

volume could be used instead for weighting the holding periods. The following approach is based on 

the assumption that the probability of buying a product independent of the day.  

 

                                                           
3 See “World Federation of Exchanges (WEF): www.world-exchanges.org: Annual Statistics Reports” or “Bundeszentrale für 
politische Bildung  http://www.bpb.de/nachschlagen/zahlen-und-fakten/globalisierung/52590/aktien“. 
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Day trades have a holding period of t=0, therefore all n0 trades are observable. In contrast, most 

of the investments with a holding period of t=T-1 will not be counted in nt, although these investments 

belong partially to the sample of time selected for observing. This incompleteness in the number of 

observable engagements nt depends on the size of the holding period t.  

 

Table 3-1 shows three day trades which are completely inside the time interval, four transactions 

with a duration of t=1 day with only two periods completely inside, and five with a duration of t=2 with 

only one transaction inside. The maximal length in the example is T-1 = 2; this case touches T = 3 

days. The semi-outside cases are registered according to their part inside the time interval. Doing this, 

the number of investments rises to (n0=3), n1=2+1 and n2=1+2.    

 
 
 
 
t Mo Tue We Thu Fr Sa  Su inside semi-

outside
0        1  
0        1  
0        1  
sum        3 0 
1         0.5 
1        1  
1        1  
1         0.5 
sum        2 1 
2         1/3 
2         2/3 
2        1  
2         2/3 
2         1/3 
sum        1 2 

Table 3-1: Example of registered numbers of holding periods and their missing part outside 
 

 

To get a better estimation of the average holding period, the registered number nt of investments 

with holding period t has to be adapted. In Table 3-1, the total number of cases (inside plus semi-

outside) is T=3 and is shown in the line of the sum. The different lines represent the possible different 

configurations of buying and selling having a fixed holding period t. Out of these cases there are T– t 

cases inside the interval and therefore observable within the data of the sample. The sum of parts 

outside the time interval is t, which belong to the time interval, too. This portion is t / (T - t) and has to 

be altered by a correction factor t  

 

tT

T
=

tT

t
+1=ρt 

, t = 0, …, T-1.      (3-1) 
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The correction factor depends on t and T-1. A large time interval T-1 for the observation of the 

holding periods reduces the effect of the factor and, depending on the research objective, makes its 

application needless. Due to the compensation of unobservable semi-outside investments in nt by the 

factor t, the average holding period will not depend on the sizes of the interval T-1. While the 

observable number nt = T – t in Table 3-1, the product nt  t = T is independent of the size of the 

holding period t. It must be mentioned that only in the artificial example do the nt shrink in a discrete 

linear way. In empirical data nt will show a different behaviour. The artificial example is based on the 

assumption that every day the probability of buying a product is equal. In this example, products were 

bought every day, each one with a holding period of from t = 0 to T-1 days. Using the correction factor, 

every holding period will have the same weight, nt  t = T when calculating the average holding period.   

 

In the small example of Table 3-1 for t= 0, 1, 2, the factors are 0 = (2+1)/(2+1-0) = 1, 1 = 

(2+1)/(2+1-1) = 1.5 and 2 = (2+1)/(2+1-2) = 3. The factor 2 = 3 means that only 1/3 of all cases are 

known due to the data's being restricted by the selection of a small time interval.  

 

For bigger samples, e.g. with a size of T-1= 1000 in the artificial case, the correction factor t 

would be: 0 = 1, 1 = 1.0010, 2 = 0.0020, 10 = 1.0101, 50 = 1.0526, 100 = 1.11099, 900 = 9.9109. In 

the case of long holding periods, e.g. t=900, the factor is high. For cases with high  it should be 

taken into account that there will be big gaps between the different observed holding periods t (see the 

right side of Figure 5-1). 

  

 

 

4. Maximum likelihood estimation which includes the complete-
outside cases 
 

 
Investments both bought before and sold after the time interval with length T-1 are not covered 

by the correction factor developed above. In the example of Table 3-1, an investment which was 

bought on Monday and sold on Saturday would be such an engagement. To take these cases into 

account for the calculation of statistical moments like the mean of the holding period, a supposition 

concerning the distribution of the holding period has to be made. The holding period of financial 

products is regarded as geometrically distributed. If the time is measured continuously, the difference 

between T-1 (maximal holding periods) and T (touched days) does not exist and the holding periods t 

in Equation (3-1) are 0 < t < T. 
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Figure 4-1: Observable and real frequencies 
 
The computation of a maximum likelihood estimator requires independent holding periods. 

Therefore, the real distribution has to be transformed into the observable distribution4, multiplying the 

real distribution with 1/t = 1 – t / T (see Equation (3-1)). For discrete time, the holding period t is the 

realisation of a geometrically distributed variable5 with the following probability function with parameter 

0 < p < 1  

 

   




 

else0

INtifp1ptf 0
t

,                  (4-1) 

 
and for continuous time the holding period is distributed according to an exponentially distributed 

variable6 with the density function with parameter  > 0 

 

 




 



else0

0tifetf
t

.        (4-2) 

 
In Chapter 4.1, the function f(t) /t with the geometrical probability function f(t) will be used to find 

a maximum likelihood estimator.  In Chapter 4.2, the exponential density function f(t)°  will be used.   

 

The process of transformation with 1/t is depicted in Figure 4-1, which shows the observable 

and real frequencies. Like the absolute frequencies, the probability functions can be transformed. As 

mentioned above, the transformed probability function which has maximal holding period T will be 

used to construct the likelihood function.  

 

  
 

                                                           
4 The transformation of the observed data by the factor t would destroy the independence of the single observations. Without 
the independence, the likelihood function cannot be built using this transformed data.   
5 See, e.g. Bosch (1992), p.123. 
6 See, e.g. Bamberg, Baur and Krapp (2012), pp. 100f. 
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 4.1. Geometrically distributed data  
 

The probability function of the observable data, in form of the transformed geometrical probability 

function (see (4-1)) is  

 

   




 

else0

INtifp1p)
T

t
1(tf 0

t

.      (4.1-1) 

 
As the cumulative distribution function of (4.1-1) has to be normalized to 1, a constant factor 

c(p,T) has to be introduced.7 With this factor, the probability function becomes 

   

   tp1
T

t
1T)c(p,=tf 







   for t = 0, 1, 2, …, T       (4.1-2)  

with 
    1+T

2

p1+1p1+T

pT
=T)c(p,




. 

 
The cumulative distribution function8 of (4.1-2) is 

 

     
    1+T

1+t

p1+1p1+T

p+1pT+pTtp+1p1
=tF




 for t = 0, 1, 2, …, T    (4.1-3) 

 
The function F(t) = 0, respectively, F(t) = 1 for t < 0, respectively, t > T. The likelihood function, 

built from a sample of n independent observed periods t1, t2, …, tn using (4.1-2), is 

 

  
         



n

1=i
i

it

n1+T

n2

n1 tTp1
p1+1p1+T

p
=p)|t,...,L(t     (4.1-4) 

 
and the logarithm of (4.1-4) is  
 

         







n

1=i
i

n

1=i
i

1+T tTln+p1lnt+11+Tp+p1lnn(p)lnn2=p))|(L(tln . (4.1-5) 

 
To find the maximum likelihood estimator, Equation (4.1-5) has to be differentiated with respect to 

p: 
  

 
      

    p1

t

11+Tp+p1

1+T+p11+Tn

p

n2
=

p

p))|(L(tln i
1+T

T











  .    (4.1-6) 

 
Exploring (4.1-6) shows, that for empirical data this function has one zero point. To characterise 

“empirical data” in a more general and applicable way, the following inequality9 (4.1-7) is used. If this 

inequality is satisfied, the zero point of (4.1-6) will additionally not be in the immediate vicinity of p=0. 

This inequality will be called the threshold criterion in the following:    

                                                           
7 Proof: see Appendix A1. 
8 Proof: see Appendix A2. 
9 See Appendix A5. 
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1T

T+T

3

1
<

Tn

t
2

2
i





 .        (4.1-7) 

 
 

As the limit of (4.1-6) will obviously be positive for p  0 and negative for p  1, the zero point is 

a maximum. For large time intervals T, the threshold given by (4.1-7) is 1/3, as in the following chapter 

in which exponentially distributed data are treated. Appendix A5 illustrates that this threshold will be 

met in a special case in which the supposition of the geometric distribution is obviously not true. In this 

special case, the holding periods are equally distributed. The maximum likelihood estimator can be 

found quickly by standard optimization tools, like, e.g. EXCEL-Solver.  

 
 
 
 4.2. Exponentially distributed data 
 

The probability function of the observable data, in form of the transformed exponential density 

function (remember the transformation factor 1/t = 1- t / T) with parameter  > 0 (see (4-2)) is  

 

   























  

else0

Tt0ife
T

t
1Tλ,c=tf tλ° .      (4.2-1) 

 
The function (4.2-1) has to be normalized. Therefore the constant factor c(,T) has to be 

determined. This normalization factor10 is 

      

1Tλ+e

λT
=T)c(λ(

λT

2




 .        (4.2-2) 

 
The density function (4.2-1) with the integrated normalization factor can be written as   
 

   






















else0

Tt0ifetT
1Tλ+e

λ
=tf tλ

λT

2
° .     (4.2-3) 

 
The distribution function11 of the function (4.2-3) is defined for the variable 0  t  T: 
 

   
Tλ

tλtλ
°

e+1λT

e+1eTtλ+λT
=tF 






.      (4.2-4) 

 
The function F(t)° = 0 and F(t)° = 1 for t < 0 and t > T respectively. The likelihood function, built 

from a sample of n independent observed periods t1, t2, …, tn using density function (4.2-3) is 

                                                           
10 Proof: see Appendix A3. 
11 Proof: see Appendix A4. 
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    









itλn

1=i
inλT

n2

n1 etT
1Tλ+e

λ
=λ)|t,...,L(t      (4.2-5) 

 
and the logarithm of (4.2-5) is 
  

         
n

1=i
i

n

1=i
i

Tλ°
n1 tTln+tλ1Tλ+elnnλlnn2=λ)|t,...,L(tln .  (4.2-6) 

 
To find the maximum likelihood estimator, Equation (4.2-6) has to be differentiated with respect to 

: 
  

 
   

 

























iTλ

Tλ

iTλ

Tλ°

t
1Tλ+e

e1Tn

λ

n2
=t

1Tλ+e

T+eTn

λ

n2
=

λ

)λ)|(L(tln
.  (4.2-7) 

 
Examining (4.2-7) shows that for empirical data, this function has one zero point. To characterise 

“empirical data” in a more general way, the following inequality12 (4.2-8) is used. If this inequality is 

satisfied, the zero point of (4.2-7) will additionally not be in the immediate vicinity of  = 0. This 

inequality will also be called threshold criterion in the following:    

 

3

1
<

Tn

ti


 .         (4.2-8) 

 
As the limit of (4.2-7) will obviously be positive for   0 and negative for   113, the zero point 

is a maximum. Appendix A5 illustrates that (4.2-8) will be met in a special case in which the 

supposition of the exponential distribution is obviously violated. In that special case, the holding 

periods are equally distributed.  

 

 
 

5. Application to short and leveraged Exchange Traded Funds 
 
 

The two approaches, using geometrically and exponentially distributed holding periods, were 

tested using the financial instrument “Exchange Traded Fund” (ETF) with the leverage factors -2, -1 

and +2. ETFs with negative leverage factors can be used for hedging14. The data were collected by 

German brokerage institutions (like comdirect bank AG (Quickborn), Deutsche Bank AG (Frankfurt), 

DAB bank AG (Munich)) for a research project in the year 2010. Appendix 6 depicts the ISIN, leverage 

factor, and the frequency of the measured holding periods of these ETFs in the sample. The 

estimation of the holding period in 2010 was done by the observable holding periods, as usual. The 

summary of the report was published in different financial magazines (e.g. the Financial Times 

                                                           
12 See Appendix A5. 
13 The sufficient condition 2n < ti  can be met by selecting an adequate scaling for the holding periods ti.   
14 See e.g. Alexander and Barbosa (2007); Flood (2010); Hill and Teller (2010); Michalik and Schubert (2009); Schubert (2011). 
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(London)15, L’AGEFI (Paris), Börse am Sonntag (München)) and showed that the majority of private 

investors reduce their holding periods and invested volume according to the risk, measured by 

leverage factors.  Figure 5-1 illustrates, as an example, the distribution of 685 holding periods of ETFs 

with leverage factor -2. The shape of the distribution is not exactly an exponential one, but similar.   

 

The upper part of Table 5-1 contains the data of the sample differentiated according to the 

leverage factors of the ETFs. The cases with leverage factor +1 were not included in the report of the 

German brokerage institutions. Therefore the small sample size of n = 286 of this ETF is missing in 

the tables of Appendix 6. The time interval T, in which the sample was observed, is depicted in the first 

row. This row also shows the dates numerically. The following part shows the sample size n and the 

sum of the holding periods. Their ratio is the traditional mean of the holding periods. In the lower part 

of Table 5-1, first the maximum likelihood estimators for the geometrical distribution are computed 

instead of the traditional mean, and then for the exponential distribution. For the determination of the 

maximum likelihood estimators, the approaches developed in Chapter 4.1 and 4.2 were applied. 

Before the estimation started, the threshold conditions (4.1-7) and (4.2-8) were tested with the result 

that these conditions are satisfied. The zero points of the functions (4.1-6) and (4.2-7) offer the 

estimators p* and * which are used to get the estimated  

 

 
Figure 5-1: Distribution of 685 holding periods with leverage factor -2 
 
 
 
 
 
 
 
 

                                                           
15 See e.g.: http://www.ft.com/cms/s/0/21453158-e670-11df-95f9-00144feab49a,dwp_uuid=d8e9ac2a-30dc-11da-ac1b-00000e2511c8.html 



Atlantic Review of Economics – 1st Volume ‐ 2017 
 

Revista Atlántica de Economía – Volumen 1 ‐ 2017 
 

Leverage -2 -1 +116 +2 Sum 

T 

Time interval 

day no. 

224 

20.08.2009-
01.04.2010 

40,045 – 40,269 

821 

01.01.2008-
01.04.2010 

39,448 – 40,269

821 

01.01.2008-
01.04.2010 

39,448 – 40,269

821 

01.01.2008-
01.04.2010 

39,448 – 40,269 

 

Sample size n 685 19,084 286 6,625 26,680 

Sum of time ti 12,177 923,014 34,212 311,654  

Mean ti /n 17 17.78 48.37 119.62 47.04  

Geometric distribution 

1T

T+T

3

1
<

Tn

t
2

2
i







 

0.07936  
<0.334828 

0.058911  
<0.337400 

0.145703 
<0.333740 

0.057299  
<0.337400 

 

ML  p* 0.048097 0.018889 0.0064313 0.019453  

(1 - p*) / p* 19.79 (+11.30%) 51.94 (+7.38%) 154.49 (+29.15%) 50.40 (+7.14%)  

Exponential distribution 

3

1
<

Tn

ti


  0.07936 

  < 0.333333 

0.058911 

  < 0.333333 

0.145703 

  < 0.333333 

0.057299 

  < 0.333333 

 

ML  * 0.050839 0.019282 0.00648949 0.019869  
1 / * 19.67 (+10.63) 51.86 (+7.22%) 154.10 (+28.81%) 50.33 (+6.95%)  

Table 5-1: Data base and maximum likelihood estimators of ETFs 2010 with different leverage factors 

 
“likelihood” mean. The estimated values18 for the holding period t are (1 - p*) / p* and 1 / *. These 

means are depicted in boldface. As expected, compared with the traditional mean, the estimated 

means of the holding periods are higher. The differences are shown in italics in line with the estimated 

average holding periods. The reason for the increase of the holding period lies in the integration of the 

“semi-outside cases” and “complete-outside cases” described in Chapters 3 and 4. In general, a small 

time interval T will cause a stronger correction than a bigger time interval. But this time interval has to 

be regarded in relation to the computed traditional mean, in which the risk of the financial instrument 

as well as the situation of the economy is included. Although the traditional mean underestimates the 

mean, it reflects the risk related behaviour of the investor, too. A small traditional mean is a sign that 

the situation is regarded as risky, and a big mean, as less risky.  

 

Although in the database the time was measured discretely, both approaches produce similar 

results. Apart from the mean, other parameters, such as the median or the percentiles, can be 

determined using the developed distribution functions F(t) (see (4.1-3) and (4.2-4)).   

 

                                                           
16 The ETF with leverage factor +1 was not included in the report for the German broker institutions and refer to only one ETF 

(ISIN: DE000A0F5UE8: “iShares DJ China Offshore 50 (DE)”) which is not listed in Table A6-1.  
17

 In the report for the German brokerage institutions 2010 the average holding period is about 0.02-0.04 days bigger. This is 
due to a higher evaluation of day trading. Instead of 0 days, in that report day trades were counted as 0.5 days.   
18 See, e.g. Bosch (1992), p. 178: E(t) = 1 / p for f(t)=p(1-p)t-1 if t  IN; in the case of  t  IN0 and f(t)=p(1-p)t the expected value 
is E(t) = 1 / p – 1 = (1 - p) / p.  
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Leverage -2 -1 +1 +2 Sum 

T 

Time interval 

day no. 

863 

20.08.2009-
31.12.2011 

40,045 – 40,908 

1460 

01.01.2008-
31.12.2011 

39,448 – 40,908

1460 

01.01.2008-
31.12.2011 

39,448 – 40,908

1460 

01.01.2008-
31.12.2011 

39,448 – 40,908 

 

Sample size n 5,293 39,851 38,710 18,532 102,386 

Sum of time ti 177,845 3,140,259 5,369,077 1,154,544  

ti /n  33.6 78.8 138.7 62.3  

Geometric distribution 

1T

T+T

3

1
<

Tn

t
2

2
i







 

0.03893 

< 0.333720 

0.05397 

< 0.333562 

0.09500 

< 0.333562 

0.04267 

< 0.333562 

 

ML  p* 0.027675 0.011766 0.006291 0.015057  

(1 - p*) / p* 35.13 (+4.56%) 83.99 (+6.58%) 157.97 (+13.89%) 65.42 (+5.00%)  

Exponential distribution 

3

1
<

Tn

ti


  0.03893 

< 0.333333 

0.05397 

< 0.333333 

0.09500 

< 0.333333 

0.04267 

< 0.333333 

 

ML  * 0.028501 0.011916 0.006337 0.015300  
1 / * 35.09 (+4.43%) 83.92 (+6.49%) 157.80 (+13.77%) 65.36 (+4.91%)  

Table 5-2: Data base and maximum likelihood estimators of ETFs 2012 with different leverage factors  
 

 

In 2012 the measurement was repeated with a bigger time interval (01.01.2008 – 31.12.2011) in 

collaboration with another set of German brokerage institutions and a wider set of ETFs19. The total 

sample size was n = 102,386. This research project contained n = 38,710 holding periods of ETFs 

with leverage factor +1, too. Due to the greater time interval for the observation of the holding periods 

(+639 days) and due to the changed behaviour of investors after the financial crisis of 2008, longer 

holding periods were observed compared to the report of the year 2010 described above. Table 5-2 

shows the data and the results of the study of 2012 in the same design as Table 5-1. Due to the 

bigger time interval T, in that research project the increase of the estimated holding period (in %) is 

smaller than in the project of 2010. As in Table 5-1, the leverage factor -2 has the smallest holding 

period, followed by the factor +2. ETFs with leverage factor -1 have the longest holding period among 

the leveraged ETFs. For the longest time, nearly 158 days, private investors hold unleveraged ETFs 

(leverage factor +1). As the financial instrument ETF is a replicated stock index, it is comparable to 

stocks, as shown in Table 2-1 for the years 2008 to 2011. The interval of 0.3 – 0.6 years means about 

110 – 220 days.  

 

                                                           
19 See Funke, Gebken, and Johanning (2012), pp. 10-11. In the project of the year 2012 day trades were counted as 0.5 days 
when the average holding periods were calculated. This augmentation of the average holding period could not be corrected in 
this paper. For the data of the project of 2010, the holding periods of day trades were counted in this paper as 0.0.    
 



Atlantic Review of Economics – 1st Volume ‐ 2017 
 

Revista Atlántica de Economía – Volumen 1 ‐ 2017 
 

The threshold criterion (4.1-7), respectively, (4.2-8), is the traditional mean of the holding periods 

divided by T. A small value of this threshold signifies that the investor perceives the riskiness of the 

leverage factor and the economic situation. If additionally the time interval T is big, this value gets 

smaller again. The smaller the mean is in relation to T, the smaller will be the correction in % of the 

traditional mean. Tables 5-1 and 5-2 together illustrate this relationship. The threshold values and the 

%-augmentation have the same rank order. The biggest threshold value (see Table 5-1 leverage 

factor +1) is 0.145703 with an increase of 29.15% and the smallest is 0.03893 with 4.56% (see Table 

5-2 leverage factor -2).      

 

 

 

6. Summary 
 
 

Two approaches to estimate average holding periods by the maximum likelihood method were 

applied to two data sets, one with 26,680 and the other with 102,386 holding periods. The bigger data 

set has 639 more days for the observation of the holding periods than the smaller one. According to 

the bigger time interval, the difference between the traditionally computed mean of the holding period 

and the maximum likelihood estimators is obviously smaller than in the first sample.  

 

Like the mean of the holding periods, the maximum likelihood estimators indicate that investors 

take risk into consideration. Although the augmentation of the traditional mean by the estimation 

procedure was very different (4.43% to 29.15%), the leverage factor -2 has the shortest holding 

period, followed by the leverage factor +2. The holding period of ETFs with inverse leverage factor -1 

is one-half as long as the holding period of ETFs with leverage factor +1.   

 

Holding periods of financial instruments depend on the economy and will differ in bearish and 

bullish markets. In the case of stocks, this up and down of the average holding periods is depicted in 

Table 2-1. The mean value of 0.3 to 0.6 years (i.e. 110 - 220 days) shows that the average holding 

period of stocks is as high as that of unleveraged ETFs.     

 

To estimate actual average holding periods, the estimation must be done in short time intervals. 

Therefore the estimation of the holding periods should be independent of the time interval T out of 

which holding periods are taken as a sample. The approaches developed in this paper offer the 

possibility of estimating the average holding periods independently of T.  
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The assumed distribution of holding periods seems to be similar to the exponential or geometrical 

distribution. To get a more flexible fit of the assumed distribution to empirical data, the developed 

approach can be applied to distributions with more than one parameter.    
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Appendix: 

 

A1: Normalization factor c(p,T) 

A2: Distribution function F(t) of the transformed geometrical probability function 

A3: Normalization factor c(,T) 

A4: Distribution function F(t)° of the transformed exponential probability function  

A5: Effect of equally distributed data 

A6: Exchange Traded Funds 
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A1: Normalization factor c(p,T) 
 

For the normalization of the cumulative distribution function of the transformed geometric 
probability function (see 4.1-1)  
 

   tp1p)
T

t
1(tf   for t = 0, 1, …, T       (A1-1) 

 
the constant factor c(p,T) is used, which includes the parameter p. Therefore the function  
 

   tp1)
T

t
1(T)c(p,=tf   for t = 0, 1, …, T      (A1-2) 

 
will be considered. To get the value of the following cumulative distribution function at T, the two 
factors on the right side of function (A1-2) are transformed and then summarized to  
  

      




   
T

0=t

T

0=t

tt
T

0=t

p1t
T

1
p1T)c(p,=f(t)=TF .    (A1-3) 

 
The two elements in the sum in the bracket will be analysed separately in the following. The first 
element separates into two terms  
 

              
  


0=t 0=t

t1+Tt

0=t 1+T=t

tt
T

0=t

t p1p1p1=p1p1=p1 .   (A1-4) 

 
Now, the sums from t = 0 to t =  in Equation (A1-4) can be joined, to obtain  
 

     



0=t

t1+T p1p11 .          (A1-5) 

  
The sum on the right side of (A1-5) is a geometric progression20 and can be replaced by 1/(1-(1-p)) 
=1/p with (1-p) < 1. The term with the replaced sum is 
 

     
p

1
p11 1+T  .           (A1-6)  

 
The second sum (without the factor 1/T) in Equation (A1-3) is the differentiation by p of the first 

element which was transformed above, multiplied by the factor - (1 - p). Therefore the differentiation of 
the transformed first element (see A1-6) can also be used for the second term: 
 

       
  

p

p
1

p11

p1=
p

p1
p1=p1t

1+T
tT

0=t

t

















  .   (A1-7) 

 
The right term in Equation (A1-7) can be differentiated, applying the product rule21 of differentiation. 
With the factor - (1 – p) this results in   
  

          T1+T

2
p11+T

p

1
p1p11

p

1
p1 








 .    (A1-8) 

                                                           
20 Opitz and Klein (2014): p. 208. 
21 Opitz and Klein (2014): p. 231. 
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The rewriting of term (A1-8) compensates the two negative signs in the left product and introduces the 
factor p/p in the right product, where the factor (1 – p) was included in (1 – p)T:  
 

         1+T

2

1+T

2
p11+Tp

p

1
p11

p

1
p1 








 .    (A1-9) 

 
Then 1/p2 and (1 - p)T+1 are shown as separate factors in the following term 
 

       p1+p)1(1+Tpp1
p

1 1+T

2









      (A1-10) 

 
which can be formulated in a shorter version: 
  

      p1+T)p1p1
p

1 1+T

2









.      (A1-11) 

 
To express the cumulative distribution function (see A1-3) using the results of (A1-6) and (A1-11), the 
second term must additionally be multiplied by 1/T:  
 

         




























 p1+pT)1p1

p

1

T

1

p

1
p11T)c(p,=f(t)=TF 1+T

2

1+T
T

0=t

 (A1-12) 

 
In this function, the factor 1/(Tp2) can be separated, introducing the factor Tp in the first term:  
 

       p+1Tp+1p1+p11pT
pT

1
T)c(p, 1+T1+T

2



 .      (A1-13) 

 
As the product Tp(1 - p)T+1 has different signs in the first compared with the second term (A1-13) can 
be designed in a shorter form (see A1-14), which should be 1, to satisfy the necessary condition to be 
a distribution function: 
 

   1=p+1p1+pT
pT

1
T)c(p, 1+T

2



 .      (A1-14) 

 
 To get the value of the normalization factor, Equation (A1-14) must be solved for this factor:  
 

  1+T

2

p1+1p)1+(T

pT
=T)c(p,




  ■     (A1-15)    

 
 
 

A2: Distribution function F(t) of the transformed geometrical probability function 
 

The probability function of the transformed geometrical probability function (see 4.1-2)  

   tp1
T

t
1)T,p(ctf 






   for t = 0, 1, 2, …, T        

becomes, with the normalization factor c(p,T) (see A1-15),  
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   
 

 t
1+T

2

p1
T

t
1

p1+1p)1+(T

pT
=tf 







 



for t = 0, 1, 2, …, T.   (A2-1) 

 
The cumulative distribution function can be developed as in Appendix A1, where the sum of the 

two terms in (A1-3) was summarized. In Appendix A1 the sum was calculated over t= 0, 1, …, T. In 
contrast to the problem of Appendix A1, now in the two sums the variable is x  IN0 with x  t. 
Therefore, the variable t has to be replaced in the sum by x and parameter T by t  (A1-6) and (A1-11). 
Doing this, (A1-3) becomes      
 

 
 

    




 



 

t

0=x

t

0=x

xx

1+T

2t

0=x

p1x
T

1
p1

p1+1p)1+(T

pT
=f(t)=tF   (A2-3) 

 
and replacing the variables in (A1-6) and (A1-11) yields 
 

   
p

1
p11 1+t           (A2-4) 

 
and  
 

    p1+t)p1p1
p

1 1+t

2









 .        (A2-5) 

 
Substituting both elements of the sum in brackets on the right side in the distribution function (A2-3) by 
(A2-4) and (A2-5) (with the factor 1/T) gives the function F(t) for t = 0, 1, 2, …, T: 
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       




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

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p1+t)p1p1
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1

p

1
p11

p1+1p)1+(T

pT 1+t

2

1+t

1+T

2

. (A2-6) 

 
Including the factor Tp2 into the left term in brackets, the distribution function of the transformed 
geometrical distribution can be seen (see 4.1-3) 
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A3: Normalization factor c(,T) 
 

The determination of the normalization factor c(,T) uses the density function (4.2-1)   
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which is the basis for the development of the distribution function and the value of this function at T: 
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The left integral in (A3-2) is solved directly and the right integral by partial integration, in which the 
variable t is function g(x) and e-t is f(t). Applying these transformations leads to 
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The determination of the left elements in the sum simplifies the function (A3-3) to  
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The integral in (A3-4) is nearly identical to the integral on the left side in (A3-2) but without the factor (- 
1/). Therefore, the solution of this integral on the left side of (A3-2), which is the term on the left side 
of (A3-4), can be used for the remaining integral in (A3-4). The solution of this integral is 
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Inserting the result of (A3-5) into (A3-4) gives the distribution function  
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which can be rewritten, using for all elements in the sum of (A3-6) the divisor T2: 
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Function (A3-7) can be expressed by a neater form, as some terms compensate for others. 
Furthermore the distribution function value at T has to be normalized: 
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Solving the function (A3-8) for c(,T) gives the result   
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A4: Distribution function F(t)° of the transformed exponential probability function  
 

The distribution function F(t)° of the transformed exponential probability function f(t)° can similarly 
be developed as depicted in (A3-2) to (A3-7). As the function F(t)° has to offer for every 0   t  T the 
function value, in (A3-2) the variable t has to be replaced by x and T by t  in the two integrals: 
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Solving the integrals in (A4-1) directly or by partial integration as in Appendix A3 leads to the 
equivalent of (A3-7) 
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in which the normalization factor c(,T) determined in (A3-9) has to be inserted: 
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The term (A4-3) can be simplified to 
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A5: Effect of equally distributed data 
 

The special case of equally distributed data is shown in Figure A5-1. The time period for the 
sample is restricted to T. In the case of a discrete variable, the frequency nt of the observable holding 
period t is depicted by bold red lines and in the case of a continuous variable by the dotted violet line. 
By the transformation factor t = T / (T – t), the real frequency (see red points in Figure A5-1) can be 
estimated.    
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Figure A5-1: Real and observable frequencies in the case of equally distributed data 

For the equally distributed data, as shown in Figure A5-1, the value of 
Tn

ti


 will be derived in the 

following. This will be shown first for (discrete) geometrically distributed holding periods and second 
for (continuous) exponentially distributed data.   

In the discrete case, the total number of observed holding periods is  tn=n . As this number is 

descending with the constant slope n0/T the number n can be computed by 
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For the computation of the sum of holding periods, the factor t must be multiplied with its frequencies 
nt: 



Atlantic Review of Economics – 1st Volume ‐ 2017 
 

Revista Atlántica de Economía – Volumen 1 ‐ 2017 
 

   






 
T

0=t

20
T

0=t
0

T

0=t

0
0

n

1=i
i t

T

n
tn=tt

T

n
n=t .     (A5-2) 

 
The sums of t and t2 in (A5-2) are well known series22 which can be replaced by ratios: 
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In (A5-3) the first element of the sum can be multiplied by 3/3 and the second fraction can be reduced 
by T. The multiplication of the terms in brackets leads to  
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which can be simplified as   
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With the results of (A5-1) and (A5-5), the term 
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
 can be expressed as 
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and finally yields the term 
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In the continuous case, the sample size n is the area of the triangle between the axis and the 

dotted line of the observable frequencies. The area of this triangle can be computed by   
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In the continuous case the  it has to be expressed by an integral which uses a descending function 

as in (A5-2) 
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With the results (A5-8) and (A5-9), the term 
Tn
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
 can be expressed for the continuous case: 
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22 See, e.g. Opitz and Klein (2014): p. 201 and Arnold (1965): p. 67.  
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A6: Exchange Traded Funds 
 
Short and leveraged Exchange Traded Funds ISIN Lev. Frequency

ComStage ETF DJ EURO STOXX 50 Leveraged TR LU0392496930 +2 204 

ETFX DAXR 2x Long Fund DE000A0X8994 +2 91 

ETFX Dow Jones EURO STOXX 50 Leveraged (2x) Fund DE000A0X9AB6 +2 12 

Lyxor ETF LevDAX LU0252634307 +2 5552 

Lyxor ETF Leveraged DJ EURO STOXX 50 FR0010468983 +2 766 

Sum (leverage factor +2)   6625 

ComStage ETF DJ EURO STOXX 50 Short TR LU0392496856 -1 255 

db x-trackers CAC 40 Short ETF LU0322251280 -1 45 

db x-trackers DJ EURO STOXX 50 Short ETF LU0292106753 -1 1808 

db x-trackers DJ STOXX 600 Banks Short ETF LU0322249037 -1 1477 

db x-trackers DJ STOXX 600 Basic Resources Short Daily ETF LU0412624354 -1 18 

db x-trackers DJ STOXX 600 Health Care Short ETF LU0322249466 -1 49 

db x-trackers DJ STOXX 600 Insurance Short Daily ETF LU0412624602 -1 5 

db x-trackers DJ STOXX 600 Oil & Gas Short ETF LU0322249623 -1 116 

db x-trackers DJ STOXX 600 Technology Short ETF LU0322250043 -1 141 

db x-trackers DJ STOXX 600 Telecommunications Short ETF LU0322250126 -1 40 

db x-trackers DJ STOXX 600 Utilities Short Daily ETF LU0412624867 -1 1 

db x-trackers FTSE 100 Short ETF LU0328473581 -1 97 

db x-trackers HSI Short Daily Index ETF LU0429790313 -1 24 
db x-trackers II EURO INTEREST RATES VOLATILITY SHORT 
TOTAL  RETURN INDEX ETF 

LU0378818727 -1  1 

db x-trackers II iTraxx Crossover 5-year Short TRI ETF LU0321462870 -1  32 

db x-trackers II iTraxx Europe 5-year Short TRI ETF LU0321462102 -1  4 

db x-trackers II iTraxx HiVol 5-year Short TRI ETF LU0321462441 -1  8 
db x-trackers II iTraxxEurope Subordinated Financials 5- year Short 
TRI ETF 

LU0378819881 -1  2 

db x-trackers II Short iBoxx € Sovereigns Eurozone TR Index ETF LU0321463258 -1 95 

db x-trackers S&P 500 Short ETF LU0322251520 -1 1191 

db x-trackers ShortDAX ETF LU0292106241 -1 13637 

ETFlab DJ EURO STOXX 50 Short DE000ETFL334 -1 2 

Lyxor ETF Short Strategy Europe FR0010589101 -1 36 

Sum (leverage factor -1)   19084 

EasyETF DJ STOXX 600 Double Short FR0010689687 -2 8 

EasyETF EURO STOXX 50 Double Short FR0010689695 -2 24 

ETFX DAXR 2x Short Fund DE000A0X9AA8 -2 607 

ETFX Dow Jones EURO STOXX Double Short (2x) Fund DE000A0X9AC4 -2 46 

Sum (leverage factor -2)   685 

Sum   26394 

Table A6-1: Short and leveraged ETFs with ISIN (International Security Identification Number), leverage factor and frequency of 
the project of the year 201023 

                                                           
23 The ETFs of the project of the year 2012 are published in Funke, Gebken, and Johanning (2012), pp. 10-11. 


